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The  solut ion of the prob lem of growth of a g a s -  vapor  bubble injected into a Liquid is obtained. 
The  growth of the bubble depends on mass  t r a n s f e r  i n t h e  gas phase  and heat t r a n s f e r  in the 
liquid phase .  Exper imen ta l  and theo re t i ca l  data  a r e  compared .  

T he solut ion of the prob lem of growth of a g a s -  Vapor bubble is essent ia l  for  invest igat ion of the  cooling 
of a liquid by bubbling gas through it and by other p r o c e s s e s .  At tempts  to  so lve  this p rob lem a r e  descr ibed  
in [1-3]. Neglecting the convect ive t e r m s  in the energy and diffusion equations,  the  authors  of [1] found a s o -  
lution of the  p rob lem of unsteady heat conduction with the aid of the Green  function for the case  of a s t a t ionary  
boundary.  In [2, 3] a solut ion was obtained by ass ignment  of the r ad ia l  d is t r ibut ion  of vapor  concentra t ion in 
the  gas and the t e m p e r a t u r e  i n t h e  liquid in the f o r m  of a quadrat ic  parabola ,  which led to  d is tor t ion  of the 
values  of the heat and ms.qs f luxes.  T h e r e  a r e  a l so  e r r o r s  in [3]. The  listed solut ions a r e  app rox ima te .  

The  main  fac tors  governing bubble growth a r e  diffusion of vapor  into the gas cavity and the r e d i s t r i b u -  
t ion of t e m p e r a t u r e  in the liquid layer  adjacent  to  the bubble.  T h e s e  fac tors  act  s imul taneous ly ,  but, to  begin 
with, it is be t te r  to consider  them s e p a r a t e l y .  It should be  noted that  s ince  the t he rma l  dfffusivity in ga se s  is 
g r e a t e r  than the diffusion coefficient ,  we can a s s u m e  that  heat t r a n s f e r  in the gas has no effect  on diffusion. 

We will so lve  the problem of vapor  diffusion into a sphe r i ca l  cavity of p re sc r ibed  va r i ab le  radius  R (t) 
with a p re sc r ibed  va r i ab le  concentra t ion xs r on its boundary.  Let the gas be  insoluble and noneondensing, 
the  p r e s s u r e  constant eve rywhere  throughout the  p r o c e s s ,  and the  vapor  in the cavi ty  have nonzero veloci ty  at  
the  moment  of en t ry .  We have to  so lve  the equation 

Ox _ D ( Ozx 2 Ox 
0t ~7 ~+-~ 0 r ~ '  0 < r < R ( t ) ;  t > 0  (!) 

with initial  condition 

and boundary condition 

Standard r ep l acemen t  of the variable 

leads to  the equation 

with initial  condition 

x(r ,  O) =Xo(r)  = O; O<~r<~Ro (2) 

x s = x s [ R  (t), t]. (3) 

v(r,  t ) =  rx(r ,  t) (4) 

0_~ = D 2 ~ -  (5) 
at  a r  2 
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v(r,  O ) = r x o = O  (6) 

and b o u n d a r  T conditions 

v s = v [R (t), t] = R (0 Xs (t); 

v(0 ,  t) = 0. 

(7) 

(8) 

Equali ty (8) is sa t i s f ied  in any p roces s  and,  hence,  does not r e f l ec t  the  spec i f ic i ty  of the  posed  p rob lem.  With 
�9 a m o r e  r igorous  approach  we would have to  d e sc r i be  m o r e  accu ra t e ly  the  p r o c e s s e s  occurr ing  in the vicini ty 

of the  cen t ra l  point.  This  is not the  p rob lem he re .  

Sys t em (5)-(8) has a unique solution[4].  The exis tence  of a solut ion,  unfortunately,  does not indicate 
tha t  it can be obtained i n t h e  f o r m  of a fo rmula .  The  l i t e ra tu re  does not contain a s ingle  solut ion for  the case  
of a r b i t r a r y  mot ion of a boundary,  f a r  less  for  an a r b i t r a r i l y  vary ing  condition on it .  Below we presen t  an 
a t tempt  at an app rox ima te ,  as f a r  as poss ib le  analyt ical ,  solut ion of Eqs~ (5)-(8) by the method of genera l ized  
t h e r m a l  potentials  [4-7]. 

The  solut ion of the  f i r s t  genera l ized  boundary-va lue  p rob lem (5)-(8) with a s t a t iona ry  boundary (r = 0) 
and a movable  boundary [r = R (t)] will be sought in the  f o r m  of a s u m  of doub le - l aye r  potentials Vi and V 2- 

v (r, t) = VI + V2. (9) 

In the  cons idered  case  the s y s t e m  of equations for  the densi t ies  of t hese  potentials has the f o r m  [4,5, 6] 

t 

2 i ~r--D (T-- ~ ) ~  exp 4D (t - -  ~) J = 
0 

t . 

1 p Ro + Rt ~2 (0 2 ] / : 5 -  ,) exp 4D (t - -  T) J 
0 

t 

2 ~ (t --'0 I/-" 4D 
0 

In s y s t e m  (10), (11), R (t) and x s (t) a r e  expanded in a s e r i e s  of powers  of t and only the l inear  t e r m s  a r e  
re ta ined;  i . e . ,  

R (t) = Ro + Rt; x s (t) = Xso + Xst, (12) 

where  ~ and :i s a r e  the r a t e s  of change of the  r e s p e c t i v e  quanti t ies;  1R 0 is the init ial  bubble rad ius l  Xs0 is the  
vapor  concent ra t ion  in the  bubble a f t e r  its injection into the liquid; and $ i  and ~r a r e  the densi t ies  of the r e -  
spec t ive  potent ia ls .  

According to  [4], the s y s t e m  (10), (11) of in tegra l  V o l t e r r a - t y p e  equations of the  second kind always has 
a solut ion.  It can be sought by the method of s u c c e s s i v e  approximat ions  developed for  a s ingle  equation but, 
by pe r fo rming  double i te ra t ion  - -  by fixing the fo rm of one of the  requi red  functions in the f i r s t  equation - -  the  
fo rm of the other requ i red  function can  be obtained by s u c c e s s i v e  approximat ions  and,  then, subst i tut ing the 
second function i n t h e  second equation and fixing its fo rm,  the f i r s t  function is sought,  and so  on. This  method,  
of cou r se ,  is exceptional ly c u m b e r s o m e .  We will s impl i fy  it .  We es t ima te  the o rders  of the quantities $i  and 
and ~2. The  o rder  of $2 in c o m p a r i s o n  with ~i ,  apar t  f r o m  the in tegra ls ,  is de te rmined  by the r ight-hand s ide  
of Eq.  (11). The  in tegra ls  a r e  less than  this value since,  accord ing  to  the t h e o r e m  of evaluation of a definite 
in tegral ,  they a r e  propor t iona l  to  the s m a l l  t i m e .  Hence, $1 will be  an  order  less than $2. We put $i  = 0. 
Then,  instead of i l l ) ,  we obtain 

t 

~( t )  ] / ~  , exp[  R (t - -  1/ t - -  - 02 (T) dT = - -  2D [XsoRo + (Xs R + xsRo) t ]. (13) 

o 

Thus ,  s y s t e m  (10), (11) reduces  to  the s ingle  equation (13). We introduce the va r i ab le  $ = 1 ~ / 2 r  and 
drop  the subsc r ip t  "2" f r o m  ~r 

(v) l/~_ . exp (--  ~2) ~ (~) d~ = - -  2D xsoR o + (Xsot~ + XsRo) ~ -  , (14) 
o 

where  u = $ IT = 0 = l~q-{/2q-D. We expand the exponential  function in the integrand in a s e r i e s  of powers  of ~ 2 
and r e t a in  only the  f i r s t  two t e r m s  : 
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w h e r e  

v 
0 ( ~ ) =  ~ + vv '~ + ~ ( (1 - -  ~) 0 (~) dL (15) 

b 

2 8D 2 (XsR + XsRo) 
c*=--2DXsoRo; ~ -  V ~ - ;  ? = - - - - R  (16) 

Numerica l  eva! -~ ions  show that t e rmina t ion  of the s e r i e s  for  the exponential function does not lead to  
any additional reduct ion of the region of applieabiUty of the solut ion.  Equation 0-5) for  may O allows the con-  
s t rue t ion  of a aequence of functions which converge  uniformly to  a solut ion of the equation. 

Per forming  the success ive  approximations,  we obtain 

, (v)  = a + Vv2+ ~ (v--~v3~- ) + a~2( "2 ,,* ) ( , 3  vs )  ( v  4 v6 
2 4 +~V 3 5 , + 782 4 6 + . . . .  (17) 

In compact fo rm,  for  v smal l  in compar i son  with unity, 

0.= -- 2Dxs.Ro [(XSoR + RoXs) l + xsoR. exp ~ - 2 - - ~  }J"  
] 

(18) 

We test the hypothesis that '~I << 82. Let, at r =0.St = 0.5.10 -2 see, radius B(r) = 0.2 era. Thenthe 
l~egral in (i0) is of the order of 0.1 8~, i.e., 81 is, in fact, relatively small. For the vapor concentration 
we have 

t t 

4 ] f l~  ( t - - ' Q  al~- 4D(t- -x)  4r]/-~-D (l--~:) a/2 4D(t--~) ] dr, (19) 
0 o 

where cos #o = +1 for r < R (t) and cos qo = --1 for  r > R(t). The  second t e r m ,  as in Eq. (10), is dropped.  Sub- 
st i tut ton of (18) gives 

t 

x(r, t )=  1 R(~) - - r  (xsoR+;~sRo)T +RGxsoexp/_RV-~- ~]exp , dr. (20) 

0 

Differentiat ing the last  express ion  with r e spec t  to r ,  we obtain 
t 

0-7 2 V'~-/5 (t - -  ,)a/2 (Xso[~ + XsRo) ~ + XsoRO exp ( R ]f~- ) exp = ~ ] / ~  } 4D(t--~)  2Dr(t--,) r z 
0 

It is inconvenient to  use Ecls. (20) and (21) in p rac t i ce :  The integrals  a r e  imprope r .  Since the solut ion 
of the bubble-growth problem requ i res  the formula  for the vapor  concentra t ion gradient  on its su r face ,  we will 
der ive an approximate  re la t ion  for (3x/ar)[R(t),  t ] .  We note that the factor  in square  brackets  in the integrand 
increases  when 0 - r -< t f rom R0xs0 to  a value a li t t le g r e a t e r  than R0xs0. Having in mind the region adjoining 
(within) the bubble su r face  and taking the average  value of this fac tor ,  we obtain 

Ox IR(t), q = 1 RoXs l?(OXs. 
o-7 V-~-6 g~ 1~ (t) T + 

In the p resen t  approximation,  as follows f rom (22), the concentrat ion gradient  at the boundary is approxi -  
mately proport ional  to  the concentrat ion and inverse ly  proport ional  to  the square  root  of the t ime .  When R = 0 
this and the other relat ionships obtained here  reduce  to known relat ions for problems with s ta t ionary  reg ions .  

We now tu rn  to  the solution of the problem of growth of a gas - -vapor  bubble as a whole, i . e . ,  as dist inct  
f rom the previously adopted position we will a s sume  the values of xs(t) and R(t) a r e  unknown and a r e  to  be de -  
t e rmined .  We consider  the s ta te  of the liquid a~jacent to  the bubble. At the in ter face  with the gas the liquid 
undergoes a phase change and cools .  The volume of the evaporating liquid is smal l  in compar ison wi th tha t  of 
the vapor  and, hence, the velocity of displacement  of the cavity boundary re la t ive  to  its center  is equal to the 
bubble--growth r a t e .  The  main p r emi se  for solution of the "diffusion--  heat r emova l"  problem is the r e q u i r e -  
ment of balance of the heat fluxes on the bubble su r f ace .  

The  t e mpe ra tu r e  dis tr ibut ion in the liquid can be represen ted  by the heat-conduct ion equation. The d raw-  
backs of this method a r e  known: f i r s t ,  the need for numer ica l  solut ion of the equation for the region with the 
movable  boundary and, secondly,  the p re sence  of a s emtinfinite region of t h e rm a l  influence and, hence,  the 
need for an additional c r i t e r ion  for the s ize  of the t he rma l  l ayer .  In actaal  fact,  however,  this layer  is not 
always l imited,  but, as a ru le ,  is ve ry  thin (if we have in mind rapid p roces ses ) .  Expansion of the cavity in 
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our case  is an addit ional  fac tor  that  continuously reduces  the layer  th ickness  5{t)' We note a l so  that  expan-  
s ion of the  cavi ty  reduces  the  smoothness  of the t e m p e r a t u r e  curve  at the outer boundary of the  t h e r m a l  layer �9  
In view of the  foregoing,  we use  the following method:  We e x p r e s s  the t e m p e r a t u r e  of the liquid in the t h e r m a l  
layer  at each instant  as a l inear  function of the radius  r .  We have 

r (r, t) = T s (t) + • (t) [r - -  R (/)]; R (t) ~ r ~ R (t) "- 6 (t); t > 0, (23) 

where  Ts  {t) = T [R {t), t ] ;  ~{t) = @T/0r)  {t) is the  tangent of the angle  of inclination of the  t e m p e r a t u r e  plot to 
the  axis  Or .  

Assuming  that  the  densi ty  p and heat capaci ty  c of the  liquid a r e  constant and neglecting in the sums  any 
5 n in compar i son  with R when n >- 1, we find the  amount of heat i n t h e  layer  and d i f fe ren t ia te  it with r e sp ec t  to  
t :  

R(t)+6(t) 

c)Q _ c) f 4~r2pcT (r, t) dr = 4apc [(Ts - -  zR - -  • 6R z + 
at at , 

R(t) 

+ (Ts -k • + 6R 2) § ~6R s + 3• 2 -I- • (24) 

Since T[R{t), t]  =T,o  = T  s +>tS,  then  

T - -  T s - -  ups  - -  f~ (T~ - -  Ts) 
6 = | and  6 = ( 2 5 )  ,~ ~2 

We subst i tu te  (25) in (24): 

OQ = 4 ~ p c  [ 7/'s R2 T - -  2T s . T - -  T s ,____ xTs  R2 ~ ~ 2R[~T s 
Ot ~ • • ' 

This  r a t e  is equal to  the heat flux into the  bubble due to  the entry  of vapor :  

2 OX 
OQot = 4~R~RxshPz -~ 4~R hpzD-~r [R (t), t]. 

T --'• Ts ) .  (26) 

(27) 

Here  pZ is the  mo la r  densi ty  of the  mix tu re  of gas and vapor ,  and h is the latent heat of vapor iza t ion  {the two 
quantities a r e  constant  when the  t e m p e r a t u r e  changes a r e  not too g rea t ) .  Relat ion (26)-(27) is the f i r s t  equa-  
t ion  for  the  t h e r m a l  layer  (on its inner  boundary) .  

The  outer  boundary of the  layer  is the  front of the heat wave propagat ing through the liquid. On this 
f ront  the  t e m p e r a t u r e  is continuous, but its gradient  changes in a jump f r o m  0 to  >t (t). The di f ference  in ve loc-  
i t ies  of the liquid at  d i s tance  5 {t) can be neglected,  so  that  the  veloci ty  of the heat wave r e l a t i ve  to  the  liquid 
is 6. The  equality of the  heat fluxes meet ing the front  and behind it gives a second equation 

4~ (R + 6)2pcT| = 4~ (R + 6)2s215 (28) 

where  a = k / p c  is  the t h e r m a l  diffusivi ty .  

We a s s u m e  that  in the t h e r m a l  p r o c e s s ,  as in the  diffusion p r o c e s s ,  the impor tant  fac tor  is the veloci ty ,  
and not the  acce le ra t ion ;  i . e . ,  at  leas t  in s o m e  in tervals  of t i m e  the r a t e  of change of the  liquid t e m p e r a t u r e  
at the  bubble s u r f a c e  T s is approx ima te ly  constant .  Then f r o m  (28) we have the express ion  

6--_- a ( T ~ - -  Ts) (29) 
6T| ' 

which can be r ega rded  as an  ord inary  d i f fe rent ia l  equation with constant  coefficients for 5{t). Its genera l  so lu -  
t ion is 

6 ( 0 =  "~/  k aTst2 (30) 
T~ 

If the  init ial  conditions at t = t o have the  f o r m  6 = 60, Too --  T s 0 = A, then 

6 = V 6g +-TU- rs /  k X)] 
The increase or reduction of 5 depends onthe sign of Ts. In our case, whent = 0, 6 = 0, and • = 0, k = 0 and 

6 = ] /  - -  a'~s t. (32) 
f 

T~ 
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Fig.  1. D i a g r a m  of-gas - - v a p o r  bubble [1) 
gas  consis t ing of components  A and B ;  2 )  

liquid component  A ]. 

At the  initial  s tage  of bubble growth T s d e c r e a s e s ,  while 5 i n c r e a s e s  l inear ly  with t i m e .  
we find 

x ( t )  - 

i . e . ,  the d is t r ibut ion of the  liquid t e m p e r a t u r e .  

Knowing Ts and 5, 

T .  - -  T s (t) 
8 (t) ' 

The condition of conserva t ion  of the m a s s  of gas in the  bubble can be wr i t ten  in the f o r m  

4~R2t~ - -  4~RZRXs = 4~RZD Ox [R (t), t] 
dr 

or ,  including (22), 

(33) 

D t 
§ (3,) 

The condition for  the rmodynamic  phase  equi l ibr ium at  the bubble s u r f a c e  is 

x s = TA __ TB , (35) 

where  m is a p a r a m e t e r  cha rac t e r i s t i c  of the par t icu la r  pair  of components  {gas and liquid); T A and T B a r e  
the  cor responding  sa tu ra t ion  t e m p e r a t u r e s .  

Combining (28), (22), (26), (25), and (27), we obtain 

p~h (21~Ts ~' t ~ s )  6 -t- ~ J = R[~xs q- V-~-D I / T  2 -  q- Rxs~ " (36) 

The  quantities and the i r  de r iva t ives  a r e  connected in the usual  way:  
t t 

= ~o + .t" Rdt; r s  = vs. + S 7"sdt and ~o on. (37) 
o o 

Relat ions (32) - (37) form a comple te  s y s t e m  of equations for  the requi red  functions of t i m e  R, xs,  T s ,  5, and 
. We can postulate  that  this s y s t e m  has a solut ion and that  it is unique. It should obviously be  sougl2 by  

numer i ca l  methods .  Befo re  doing th i s ,  however ,  we mus t  take  full account of the physical  s c h e m e  of the p r o -  
t e s s ,  the  actual  conditions encountered in p rac t i ce  and in contro l  expe r imen t s .  

In al l  the  papers  that  we know, the solution of the p rob lem of growth of a gas - - v a p o r  bubble r e l a t e s  to  a 
cent ra l ly  s y m m e t r i c  s i tuat ion or an a x i s y m m e t r i c  one, which allows cons idera t ion  of the  effect  of the  flow of 
the  liquid over  the  bubble.  Heat and m a s s  t r a n s f e r ,  however ,  do not proceed in accordance  with a spher i ca l ly  
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Fig.  2. Growth of a i r  bubble in water  [1) our expe r imen ta l  
data;  2) calculat ion;  A is the  point of b reakaway  of the bubble 
f r o m  the in jec tor] ;  a) T ~  = 94.2~ x~ = 0.837, x 0 = 0.00623, 
R ~ = 3 . 1 m m ,  R 0 = l . 7 m m ,  U a v = 2 0 . 4 c m / s e c ;  b) T ~  =93.7~ 
x~  = 0.8214, Xo= 0.00623, R,o = 2.37 m m ,  R 0 = 1.34 m m ,  Uav = 
20.2 c m / s e c ,  R = (R/R 0 - -  1)/(Roo/R 0 -- 1); Fo = at/R2o . 

s y m m e t r i c  s c h e m e  at  any t i m e .  Be fo re  the s t a r t  of ascen t  the bubble r e m a i n s ,  although for  a re la t ive ly  s m a l l  
t i m e ,  on the  solid s u r f a c e ,  which leads to a d i f fe rence  of conditions in the ve r t i c a l  d i rec t ion .  In addition, a l -  
though the bubble m a y  be formed e x t r e m e l y  rapidly ,  the  r a t e s  of t r a n s f e r  p r o c e s s e s  at this  s t age  a r e  g r e a t e s t ,  
so  that  the change in p a r a m e t e r s  at  the  inject ion s tage  cannot be  neglected a p r i o r i .  Thus ,  a comple te  ca lcu-  
lation of the p a r a m e t e r s  of heat and m a s s  t r a n s f e r  be tween liquid and gas will have to  include t h r e e  var iants  
of the  calcula t ion p rocedure :  during fo rma t ion  of the bubbles ,  during the i r  growth on the in jector  su r f ace ,  and 
at  the  ascen t  s t ag e .  

T o  d e s c r i b e  the  f i r s t  s t age  we p ropose  the  following s c h e m e  (Fig. 1). A batch  of gas is injected into the  
liquid by an  in jec tor  valve with a cy l indr ica l  outlet of radius  R1 in t i m e  t o (this t i m e  was fixed in the  ex p e r i -  
ments ) .  Let R 0 be  the  radius  which the  bubble would have at t i m e  t o if  t h e r e  was no m a s s  t r a n s f e r  dur ing in-  
ject ion.  We a s s u m e  that  the inject ion veloci ty  -- the veloci ty  of the  bubble center  - -  dur ing the whole injection 
process  is 

VB = 2R0 (38) 
~0 

During inject ion the  gas is i n t h e  fo rm of a s p h e r i c a l  s egment  of radius  l~(t) above the in jec tor  s u r f a c e .  At 
points A, B,  and C on the s u r f a c e  of this segment  the conditions a r e  di f ferent ,  s ince  the  liquid par t ic les  at 
t h e s e  points at a g iven momen t  land o n t h e  bubble su r f ace  at dif ferent  t i m e s .  At point A the liquid is con-  
t inuously renewed - -  pa r t i c les  with init ial  t e m p e r a t u r e  T ~  a r r i v e  on i t .  At point C t h e r e  is a par t ic le  which 
came  into contact  with the  gas at  the  s t a r t  of inject ion (of this batch) .  The point B is level  with the center  of 
the  height of the  s e g m e n t .  Seve ra l  in te rmedia te  calculat ion points Bi can be  t aken  between A and C. We used 
one or two in the calculat ion - -  th is  gave  suff icient ly a ccu ra t e  r e su l t s  (note that  we ta lk  about "points" only for  
convenience." for  each point t h e r e  is a " c i r c l e - l e v e l "  at which the  liquid par t i c les  have the  s a m e  p a r a m e t e r s ) .  
At the point B t h e r e  a r r i v e  par t i c les  which have been involved for s o m e  t i m e  tB0 in the heat -  and m a s s - t r a n s f e r  
p rocess  : 0 -< tB'-< tB 0. We take  tB0 = t0/2 .  

The  d i f fe rence  in m a s s - t r a n s f e r  conditions leads to  different  local r a t e s  of bubble growth.  The  in ternal  
p r e s s u r e  and s u r f a c e  tension,  however ,  even out the shape  of the bubble at  a speed well  in excess  of t{. so  that  
its shape  is init ially a sphe r i ca l  s egment  and then a s p h e r e .  The height of the  segment  y(t),  if VB >> R, is 

y (t) = YBt. (39) 

The  a r e a  of the  bubble s u r f ace  is  

S (t) = 2 .uR( t ) y  (t) (40) 

Inject ion is accompanied  by an  i nc r ea s e  in the d i a m e t e r  of the bubble.  Since mass  t r a n s f e r  at point C is ve ry  
slow (and at point A, rap id) , the  local growth r a t e  at point A ~ A )  is ,  consequently,  the r a t e  of i nc rea se  of the 
ve r t i c a l  d imens ion  of the  bubble (and when t > to, the r a t e  of i nc r ea se  of its d i a m e t e r ) .  To  avoid the  numerous  
i terat ions of the p a r a m e t e r s  at  points A, B, and C for  each instant ,  we found it convenient to  take the a v e r a g e  
growth r a t e  equal to  
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Fig. 3. Growth of nitrogen bubble in water 
[1) exper imenta l  data [2]; 2) calculat ion;  A 
is the  point of b reaksway  of the  bubble f r o m  
the injector] :  TaD = 9 4 . 6 ~  x ~  = 0 . 8 5 6 ,  x 0 = 

0.003, R~ = 5.73 ram,  R 0 = 3.0 ram,  Vav = 
20 c m / s e c ,  ~ = ~/I:T o - -  1 ) / ( R , / R  0 - -  I); 
ro  = ~ t ~ .  

(41) = , , a  
2 

and vary ing  (if the iner t ia  of the  liquid is t aken  into account) f r o m  ze ro  to  a value l~A0 (at t i m e  t 0) accord ing  to  
a l inear  law, s o  that  the  bubble radius  va r i e s  with t i m e  in the  following way:  

R (t) = R o + R A.[z �9 (42) 
4to 

We a l so  a s sume  that  at the  inject ion s t age  xs is constant  and equal to  s o m e  a v e r a g e  value XSa v r be  d e t e r -  
mined) .  

Putting r,s = O, we obtain f rom (34) 

Dxs" . _ _  (43) 
RA.= (I -~s.) V~-D~ 

Using (40), (42), and (43), we calculate the mass of the vapor in the bubble at time to: 

- - [  R~ 2R~ R~xs. Raot~/2 ] (44) 
m~176 6 ( l - - x s . )  ~ 3 + 40(l--Xso) + 14 " 

We now find the  t e m p e r a t u r e  of the  liquid at  points B and C. The  coordinates  z B and z C (Fig. 1) va ry  a c c o r d -  
Lug to  the  law 

zB(t) = 2R-----~(t---~); 
to 

2Rot to 
I-to fo, 0 ~ < t ~ < - ~ ;  

~c(t)= 12~--~ (to-t) fo, t~176 
(45) 

Through the s t r i p  of s u r f ace  formed by the c i r c l e  of points of type  B and subtended by a cen t ra l  _~ngle A | the 
bubble r e c e i v e s ,  in t i m e  %/2 _< t --< to, the  following amount  of heat :  

te 

AQB= 2npz, XSavhAO i" ZB(t) (Ro " RA'~ )( ~A~ 
4t 0 2to 

tD!2 

Simi la r ly ,  for  the  point C c i r c l e  in t i m e  0 - t --- t o 
to~2 

( I dt + AQc= 2=O  sa? o [.t" 2Rot  --2 o + , 
0 

V~ 

- 1/~ / at. 

lo 

i , % 
te/2 

(46) 

(47) 
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The  quadratures  of (46) and (47) a r e  e lementary ,  but cumbersome,  and hence a r e  not given. 
heat brought f rom the liquid adjoining points of types B and C i s ,  accordingly,  

~Qs.c = 2rip cR~'~@ 2 

The amount of 

(4s) 

The  calculat ion procedure  is as follows : We a s s ign  T s (to), f rom which we find n (to) , Xs(t0), andxsa v = 
[x s (to) + Xs0]/2. We subst i tute  these  values in (46)-(48) and f rom the d iscrepancy  we c o r r e c t  T s (t 0) and c a r r y  
out the i te ra t ions .  

The  calculations showed that the bubble ~0  = 0.17 cm) during the injection t im e  t o = 0.008 sec  absorbs 
14% of the total  amount of heat that it can absorb .  For  a bubble with R 0 = 0.3 cm this f rac t ion is about 9% in 
t i m e  t o = 0.002 sec .  Thus,  t r a n s f e r  p rocesses  must be taken with account of the s t a r t  of gas injection.  

In solving the problem for the following two stages of bubble growth we can again use the combined axi -  
s y m m e t r i c  s cheme  of calculat ion.  This is just if ied:  The spher ica l ly  sy m m et r i c  solution would obviously 
lead to  an underes t imated  value of the growth r a t e .  Another point that must  be taken into account is that at 
the  s tage at which the bubble remains  on the  in jector  su r face  the liquid moves in a meridional  d i rec t ion  due 
to  growth of the  bubble.  If we assume  that the dis t r ibut ion of the liquid t e m p e r a t u r e  along the mer id ian  f rom 
point A to  point B is l inear ,  then in t ime  At at the second stage we must add to the t e m p e r a t u r e  at point B the 
quantity 

hV--  T |  B RAt, (49) 

2 

s ince  the ve r t i ca l  component of the liquid veloci ty re la t ive  to point B is 1~ (here T B is the liquid t e m p e r a t u r e  
at point B). 

At the s tage of ascent  of the bubble we must again introduce this cor rec t ion ,  but instead of 1~ we must 
put the average  veloci ty  of ascent  of the bubble (U~o) into the r ight-hand s ide of (49). The vapor  concentrat ion 
gradient  must  be calculated at all points of the su r face  in re la t ion  to  the total  t ime  of contact of this point with 
the  liquid, s ince  t he r e  a r e  ahvays some  of the liquid par t ic les  at this point and diffusion is continuous. 

As examples we give the resu l t s  of a compar i son  of the theore t i ca l  and exper imental  pictures of growth 
of a i r  (Fig. 2a,b) and ni trogen (Fig. 3) bubbles in water .  In the exper iments  the gas bubbles were  injected 
into the  liquid by an e lec t romagnet ic  valve and were  photographed by an SKS-1M high-speed camera  at 4000 
f r a m e s / s e c .  Befo re  injection the gas was dried and heated to  the liquid t e m p e r a t u r e .  The bubble volume was 
found by graphic  integrat ion.  If the vapor  concentra t ion gradient  in the bubble is known, its average  value 
over the volume at each instant can be calculated.  Bubble growth ceases  when this quantity attains a value 
corresponding to  sa tura t ion  at t e m p e r a t u r e  T~o. The agreement  of the theore t i ca l  and exper imenta l  data is 
quite sa t i s fac to ry :  The values of the final bubble radius R~ differ  by not m o re  than 6%, and the values of the 
amount of heat removed  f rom the liquid differ  by not m o r e  than 12%. 

The  solut ion of the  problem of heat and mass  t r a n s f e r  in bubble injection by the  presented method is 
used to  obtain the var ia t ion  in t ime  of the bubble radius ,  the mass and heat fluxes through the bubble sur face ,  
the  t e m p e r a t u r e  and vapor  concentrat ion on this sur face ,  and the re la t ive  gas humidity r When ~#{t) and U~ 
a re  known, the requ i red  height of the liquid layer  in the planned cooling sys tem for  the obtaining of a prescr ibed  
degree  of cooling can be found; i . e . ,  the  ideas p resen ted  here  can be put to effective prac t ica l  use.  

N O T A T I O N  

x, mola r  vapor  concentrat ion;  D, diffusion coefficient (m 2.sec-1) ;  p, molar  densi ty (mole .m-3) ;  c, 
molar  specif ic  heat ( J -mo le  -1 -deg-1); h, molar  heat of vapor iza t ion  (J .mole- i ) ;  X, t h e r m a l  conductivity 
(W .m -1 .deg-1); a ,  t he rma l  diffusivity (m2"sec-1); R, bubble radius ,  m; 6, thickness of t he rma l  layer ,  m; 
T ,  t e m p e r a t u r e  (deg); t ,  t ime  {sec); T, instantaneous t ime  (sec); U, bubble ascent  velocity (m.sec-1) ;  VB, 
bubble injection veloci ty (m.sec-1) ;  S, su r face  a rea ,  m2; r ,  z, y, coordinates (m); x, t em p e ra tu r e  gradient  
in t h e r ma l  layer  (deg .m- i ) ;  v, auxi l iary  function; V, general ized heat potential; ~,  heat potential density;  
Fo, Four i e r  number .  Indices:  O, initial values;  oo final values;  S, conditions onbubble  sur face ;  ~, mix-  
lu re ;  av, average  v a l u e ; . ,  d i f ferent ia t ion with r e spec t  to  t ime;  A, sa tura t ion  of liquid component A; B ,  
sa tura t ion  of gas component B.  
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CRITICAL DISCHARGE OF SATURATED AND SUBCOOLED 

WATER THROUGH CHANNELS OF DIFFERENT SHAPES 

V. G. Tonkonog, G. A. Mukhachev, 
B. M. P a r l o r ,  and I.  F. Murav ' ev  

UDC 532.57 

A complex  exper imen ta l  invest igat ion of the outflow of sa tu ra ted  and subcooled wa te r  through 
channels of different  fo rms  has been  ca r r i ed  out in the p r e s s u r e  range  of 5-20 ba r ;  the  inves -  
t igat ion included the m e a s u r e m e n t s  of the d i scha rge ,  s ta t ic  p r e s s u r e  cu rves ,  mo i s tu r e  content 
field of the two-phase  flow, and the photographic record ing  of the evapora t ion  p r o c e s s .  E m p i r i -  
cal  equations a r e  proposed for  de te rmin ing  the  c r i t i ca l  d i s cha rge .  

The outflow of liquid into a med ium with sma l l  c o u n t e r p r e s s u r e  leads  to the fo rmat ion  of a ve ry  
mois t  two-phase  flow. In the gene ra l  case  this p rocess  occurs  with the  violat ion of the the rmodynamic  
equil ibrium and the v a p o r -  liquid flow thus formed is cha rac t e r i zed  by  a s t r u c t u r a l  inhomogeneRy [1,2]. A 11 
this  makes  it difficult to  use analy t ica l  methods for  de te rmin ing  the m a x i m u m  d i scha rge  of the  evaporat ing 
liquid and forces  one to  take  r e c o u r s e  to  expe r imen t s .  In the  exper imen ta l  r e s p e c t  the mos t  comp}etely in- 
vest igated flow is the  flow of wa te r  through d iaphragms  and cyl indr ica l  channels and t h e r e  a r e  prac t ica l ly  no 
investigations of the flow of an evaporat ing liquid to channels of va r i ab l e  c ro s s  sec t ion ,  as can be s e e n  f rom 
c omprehens  ive r eviews [3,4 ]. 

We made  an a t tempt  to  study the  effect  of the geome t ry  of the channel on the c r i t i ca l  phenomena in a 
two-phase  flow and on the c r i t i ca l  d i scha rge .  The exper iments  were  conducted on a device  which was made 
accord ing  to the closed s c h e m e  and is descr ibed  in [5]. As the operat ing subs tance  we used clean deae ra ted  
water  f rom the main  supply to  the boi le rs  of the Kazan'  T E T s - 2  t h e r m o e l e c t r i c  power plant. Befo re  the ex-  
pe r imen ta l  segments  the wa te r  p a r a m e t e r s  were  m e a s u r e d  in the p r e s s u r e  range  of 5-20 b a r  and t e m p e r a t u r e  
range  of 100-200~ The geom e t ry  of the exper imen ta l  channels is shown in Fig. 1. They include Lava l  
nozzles with opening angles  of 2-30 ~ diverging channels  with a sharp-edged  entrant  or i f ice  and opening angles  
of 4-30 ~ and channels of constant  c r o s s  sect ion.  In all,  23 plane channels were  tes ted.  The d imens ions  of 
some  of these  a r e  given in Table  1. The s tat ic  p r e s s u r e  dis t r ibut ion along the length of the expe r imen ta l  
channels was m e a s u r e d  with the use of a tension probe  placed in the plane wall  of the channel. The fields of 
the phase  concentra t ions  in the flow were  obtained by the rad iographic  method descr ibed  in [2] by i l luminating 
the two-phase  flow with x - r a y  beam s .  

A combined analys is  of the s ta t ic  p r e s s u r e  cu rves ,  the mo i s tu re  content field, and the d i scharge  c h a r -  
a c t e r i s t i c s  of the channels ,  for  which the typica l  r esu l t s  of m e a s u r e m e n t s  a r e  given in Figs. 2, 3, and 4, 
showed that  the es tabl i shment  of the  m a x i m u m  d i scharge  is re la ted  to  the fo rmat ion  of a zone of intense 
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