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GROWTH OF A BUBBLE OF NONCONDENSING GAS
INJECTED INTO A LIQUID

B. N. Yudaev, O, V. Tsirlin, UDC 532,529
and A, A. Yushkin

The solution of the problem of growth of a gas— vapor bubble injected into a liquid is obtained,
The growth of the bubble depends on mass transfer in the gas phase and heat transfer in the
liquid pbase, Experimental and theoretical data are compared.

The solution of the problem of growth of a gas— vapor bubble is essential for investigation of the cooling
of a liquid by bubbling gas through it and by other processes. Attempts to solve this problem are described
in 1-3]. Neglecting the convective terms in the energy and diffusion equations, the authors of 1] found a so~
lution of the problem of unsteady heat conduction with the aid of the Green function for the case of a stationary
boundary. In {2,3]a solution was obtained by assignment of the radial distribution of vapor concentration in
the gas and the temperature in the liquid in the form of a quadratic parabola, which led to distortion of the
values of the heat and mass fluxes. There are also errors in [3]. The listed solutions are approximate.

The main factors governing bubble growth are diffusion of vapor into the gas cavity and the redistribu-
tion of temperature in the liquid layer adjacent to the bubble. These factors act simultaneously, but, to begin
with, it is better to consider them separately. It should be noted that since the thermal diffusivity in gases is
greater than the diffusion coefficient, we can assume that heat transfer in the gas has no effect on diffusion.

We will solve the problem of vapor diffusion into a spherical cavity of prescribed variable radius R ¢)
with a prescribed variable concentration xg ) on its boundary. Let the gas be insoluble and noncondensing,
the pressure constant everywhere throughout the process, and the vapor in the cavity have nonzero velocity at
the moment of entry., We have to solve the equation ’
ox D ( 0% 2

a
¥ —(972—+T‘(%\lv0<’<R(t)» t20 @)

with initial condition

x(r, ) =x(r)=0; 0<r<R, @)
and boundary condition
xg=xs[R(), 1]. @)
Standard replacement of the variable
v(r, ) =rx(r, 1) @)
leads to the equation
d _pov )
dt or?

with initial condition
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v(r, 0)=rx,=0 (6)
and boundary conditions
vg=vIR(®), 1 =R®x5(); (7
v(0, f)=0. 8)
Equality (8) is satisfied in any process and, hence, does not reflect the specificity of the posed problem, With

. & more rigorous approach we would have to describe more accurately the processes occurring in the vicinity
of the central point, This is not the problem here.

System (5)-(8) has a unique solution[4]. The existence of a solution, unfortunately, does not indicate
that it can be obtained in the form of a formula. The literature does not contain a single solution for the case
of arbitrary motion of a boundary, far less for an arbitrarily varying condition on it. Below we present an
attempt at an approximate, as far as possible analytical, solution of Eqs. (5)-(8) by the method of generalized
thermal potentials [4-7].

The solution of the first generalized boundary-value problem (5)~(8) with a stationary boundary & = 0)
and a movable boundary [r =R ()] will be sought in the form of a sum of double-layer potentials vy and V,:

v(r, )=V, +V, 9)
In the considered case the system of equations for the densities of these potentials has the form {4,5, 6]
¢ , .
1 R, 4+ Rt (R, -+ Rr)? .
4, (1) — — 0 — e &, (1) dr =0 10
) j (t—" EXP[ 4D(t—1)] () (10)

0

¢ . .
1 Ry + Rt (R, -+ Rt)?
¥, (f) — — 0 —exp | — ———— | &, (1) dTr —

2(0) 2V =D Y (=" ° p[ 4D (t —7) ()

¢

{ . .
1 J" R R2(t—n)
— 173 exp _——

2V aD t—7) . 4D

[]
In system (10), (11), R¢) and x4 ) are expanded in a series of powers of t and only the linear terms are
retained; i.e.,

} 0, (1)dv = — 2D [xg Ry + (x5 R+ XsRp)1]. {11)

R(®)=Ry+ Rt; x,(t) = xg, + xd, (12)

where R and Xg are the rates of change of the respective quantities; R, is the initial bubble radius; xg , is the
vapor concentration in the bubble after its injection into the liquid; and 4; and ¢, are the densities of the re-
spective potentials.,

According to (4], the system (10), (11) of integral Volterra-type equations of the second kind always has
a solution., It can be sought by the method of successive approximations developed for a single equation but,
by performing double iteration — by fixing the form of one of the required functions in the first equation — the
form of the other required function can be obtained by successive approximations and, then, substituting the
second function in the second equation and fixing its form, the first function is sought, and so on, This method,
of course, is exceptionally cumbersome, We will simplify it. We estimate the orders of the quantities 4, and
and ¢,. The order of ¢, in comparison with 4, apart from the integrals, is determined by the right-hand side
of Eq. (11). The integrals are less than this value since, according to the theorem of evaluation of a definite
integral, they are proportional to the small time. Hence, ¢ will be an order less than #,. We put ¢; = 0;
Then, instead of (11), we obtain
2 ¢ R(#t—n) R
ver | =
Thus, system (10), (11) reduces to the single equation (13). We introduce the variable £ =RV = 7/2VD and
drop the subscript "2" from 4,: :

exp |

A — —
8, (1) |~

9, (1)dv = — 2D [xg, Ry + (x5, R + x5Ry) 1]. s)

& (v) — ~_2: S exp(—E) O (E)dE = — 2D {XsoRo + (xsolé -+ ;}SRO) B (14)
h .

4Dv? }
Va ’

wherev =£l =y = RVE/2VD. We expand the exponential function in the integrand in a series of powers of £2
and retain only the first two terms:
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& (v) -a+vv2+ﬁ\(1—§2)ﬁ(§)d§ 5)
where
2 8D (xg,R + £5R;)
a:——QstoRo;ﬁ=T/“:; y=— SR s . 16)
Numerical evaluations show that termination of the series for the exponential function does not lead to
any additional reduction of the region of applicability of the solution. Equation (15) for any 8 allows the con-
struction of a sequence of functions which converge uniformly to a solution of the equation,

Performing the successive approximations, we obtain
2 v 6 7 V‘ VG
a(v)-—-a+vv2+aﬁ(v——-)+ B(———)+ﬁv( )+v52(7——---)+--- . an
In compact form, for v small in comparison with unity,
. . RVt
¢ =— 2st“R0 [(xsoR -+ Roxs) t+ xS,RO exp ('WD_—)] . (18)

We test the hypothesis that ¢, «< #,. Let, at 1 ='0.5t = 0.5 +10-2gec, radius R(r) = 0.2 cm. Then the
integral in (10) is of the order of 0.1 §,, i.e,, #; is, in fact, relatively small, For the vapor concentration
we have

l .
_ O (1) cos @ [R(r)—7 — R(t)cosp (R (x)— ]2

t) = == 2 A i) —=rj"
*e j‘ll/nD — 0" e |- AD(— +j”<)4,1/,r0 e e | 4D(z_T)}d" (19)

where cos ¢ = +1 for r <R () and cos 9 = —1 for r > R¢). The second term, as in Eq, (10), is dropped. Sub-
stitution of (18) gives

_ 1 i R(t)—r S _RV? _[R@m—m>
x(r, )= VD ( (—" I:(xsaR+-¥sRo)T +Roxs,exp( 5D )J exp{ TD(_t:T),} dr. 20)

Differentiating the last expression with respect to r, we obtain

dx 1 1 o , RVt R@—r? V[ [R@~—r* R
o = 2‘/;5— S (=" [(xsoR—rsto)t—rxsoRoexp( VoD )] exp{— iD({—n) H Dr(f—1) ~ }d‘t. (21)
0
It is inconvenient to use Egs. (20) and (21) in practice: The integrals are improper. Since the gsolution

of the bubble-growth problem requires the formula for the vapor concentration gradient on its surface, we will
derive an approximate relation for (9x/0r)[R{), t]. We note that the factor in square brackets in the integrand
increases when 0 < r <t from Roxg, to a value a little greater than Rgxg,. Having in mind the region adjoining
(within) the bubble surface and taking the average value of this factor, we obtain

Ox .
? [R(t), f]1= iﬁm [Roxs ? + R(l)xs.] .

In the present approximation, as follows from (22), the concentration gradient at the boundary is approxi-
mately proportional to the concentration and inversely proportional to the square root of the time. WhenR = 0
this and the other relationships obtained here reduce to known relations for problems with stationary regions.

/

(22)

We now turn to the solution of the problem of growth of a gas — vapor bubble as a whole, i.e., as distinct
from the previously adopted position we will assume the values of xg () and R ) are unknown and are to be de-
termined. We consider the state of the liquid acjacent to the bubble. At the interface with the gas the liquid
undergoes a phase change and cools. The volume of the evaporating liquid is small in comparison with that of
the vapor and, hence, the velocity of displacement of the cavity boundary relative to its center is equal to the
bubble-growth rate. The main premise for solution of the "diffusion — heat removal" problem is the require-
ment of balance of the heat fluxes on the bubble surface.

The temperature distribution in the liquid can be represented by the heat-conduction equation. The draw-
backs of this method are known: first, the need for numerical solution of the equation for the region with the
‘movable boundary and, secondly, the presence of a semiinfinite region of thermal influence and, hence, the
need for an additional criterion for the size of the thermal layer. In actual fact, however, this layer is not
always limited, but, as a rule, is very thin (if we have in mind rapid processes). Expansion of the cavity in
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our case is an additional factor that continuously reduces the layer thickness 6¢). We note also that expan-
sion of the cavity reduces the smoothness of the temperature curve at the outer boundary of the thermal layer.
In view of the foregoing, we use the following method: We express the temperature of the liquid in the thermal
layer at each instant as a linear function of the radius r. We have

T(r, ) =Tg(O) +=(Or—RY; ROSr <R -8(1); >0, (23)
where Tg ) =TR &), t]; ) = (0T/0r) &) is the tangent of the angle of inclination of the temperature plot to
-the axis Or,

Assuming that the density p and heat capacity ¢ of the liquid are constant and neglecting in the sums any
8% in comparison with R when n = 1, we find the amount of heat in the layer and differentiate it with respect to
t:

5 5 R(HE8(2) _
a—? == dnur?pcT (r, 1) dr = 4mpe [(T — R — %R) 6R? +-
: RN
+ (T + #R)(2RRS -+ 6R?) + #8R® + 348RR? - #6R?]. (24)
Since TR{), 1] =Tw =Tg + 16, then
T — .y T (T —
8= _l—-l‘?— and § = #Ts x(sz Ts) . (25)
. " N
We substitute (25) in (24):
. T_-—2T . T —T . T —Tg
9 _ 4o (TSRZ =S AT R =TS 4 9RRT _;"_i) : 26)
ot ? %2 %
This rate is equal to the heat flux into the bubble due to the entry of vapor:
%(% = 4nR*Rxshos + 4nR2h.ozD%f (R, 1]. @)
’ t

Here py is the molar density of the mixture of gas and vapor, and h is the latent heat of vaporization {he two
quantities are constant when the temperature changes are not too great), Relation (26)-(27) is the first equa-
tion for the thermal layer (on ifs inner boundary).

The outer boundary of the layer is the front of the heat wave propagating through the liquid. On this
front the temperature is continuous, but its gradient changes in a jump from 0 ton(t). Thedifference inveloc-
ities of the liquid at distance 6¢) can be neglected, so that the velocity of the heat wave relative to the liquid
is 6. The equality of the heat fluxes meeting the front and behind it gives a second equation

431 (R + 8)2pcT 6 = 4mu (R -+ 8)*hx, (28)
where a = A/pc is the thermal diffusivity.

We assume that in the thermal process, as in the diffusion process, the important factor is the velocity,
and not the acceleration; i.e., at least in some intervals of time the rate of change of the liquid temperature
at the bubble surface Ty is approximately constant. Then from (28) we have the expression

a(T, —Ty)

T , (29)

8 —
which can be regarded as an ordinary differential equation with constant coefficients for 6{). Its general solu-
tion is '

’ af
8(f) = ‘/k— S . (30)
T
If the initial conditions at t =t, have the form 6 =6y, Tw — Tg, = A, then
alg 2 2 '

a=]/65+__8[(t0__4.) _a(z__.A.) . (31)

T. T T
The increase or reduction of 6 depends on the sign of ’fs. In our case, whent =0, 6 =0, and A =0, k=0and

5= ‘/ '“;TS . (32)
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Fig. 1. Diagram of gas —vapor bubble [1)
gas consisting of components A and B; 2)
liquid component A].

At the initial stage of bubble growth T4 decreases, while 6 increases linearly with time. Knowing ’i‘s and 6,
we find
T.—Tg(f)
x(f) = R 7 e (33)
i.e., the distribution of the liquid temperature.
The condition of conservation of the mass of gas in the bubble can be written in the form

4nR?R — 4nR*Rxg = 4nRZD%ﬁ (R (),
r
or, including (22),

. D -t
1'— = —m————s R - .
RU=%) = S5 ViR ( " +Rxs°) (34
The condition for thermodynamic phase equilibrium at the bubble surface is
Ts _ TB )m

v = |58 (35)
s (\TA_TB

where m is a parameter characteristic of the particular pair of components (gas and liquid); TA and Tg are
the corresponding saturation temperatures.

Combining (28), (22), (26), (25), and (27), we obtain

aTsoRV.

i [(2RTS + RIS +—32 ] = RRxg +

p:h

D -t
—Vn:D—ﬁ (ROxS T + Rxsu ) . (36)

The quantities and their derivatives are connected in the usual way:

t t
R=R,+ (Rdt; Tg=T, + [Tdt andsoon. (37
0 b

Relations (32)-(37) form a complete system of equations for the required functions of time R, xg, Tg, 6, and
. We can postulate that this system has a solution and that it is unique. It should obviously be sought by
numerical methods. Before doing this, however, we must take full account of the physical scheme of the pro-
cess, the actual conditions encountered in practice and in control experiments.

In all the papers that we know, the solution of the problem of growth of a gas —vapor bubble relates to a
centrally symmetric situation or an axisymmetric one, which allows consideration of the effect of the flow of
the liquid over the bubble. Heat and mass transfer, however, do not proceed in accordance with a spherically
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Fig. 2. Growth of air bubble in water [1) our experimental
data; 2) calculation; A is the point of breakaway of the bubble
from the injector]: a) Tw = 94.2°C, X = 0.837, x; = 0.00623,
Rwo = 3.1 mm, Ry =1.7 mm, Ugy =204 cm/sec; b) Tw =93,7°C,
Xeo = 0.8214, x; = 0.00623, Rw = 2,37 mm, Ry;=1,34 mm, Ugy =
20.2 cm/sec, R = R/Ry— 1)/Rw/Ry— 1); Fo= at/R%.

symmetric scheme at any time: Before the start of ascent the bubble remains, although for a relatively small
time, on the solid surface, which leads to a difference of conditions in the vertical direction. In addition, al-
though the bubble may be formed extremely rapidly, the rates of transfer processes at this stage are greatest,
so that the change in parameters at the injection stage cannot be neglected a priori. Thus, a complete calcu-
lation of the parameters of heat and mass transfer between liquid and gas will have to include three variants
of the calculation procedure: during formation of the bubbles, during their growth on the injector surface, and
at the ascent stage,

To describe the first stage we propose the following scheme (Fig, 1). A batch of gas is injected into the
liquid by an injector valve with a cylindrical outlet of radius Ry in time t, ¢his time was fixed in the experi~
ments), Let R, be the radius which the bubble would have at time t if there was no mass transfer during in-
jection, We assume that the injection velocity — the velocity of the bubble center — during the whole injection
process is

v = 2R (38)
B to

During injection the gas is in the form of a spherical segment of radius R ¢) above the injector surface, At
points A, B, and C on the surface of this segment the conditions are different, since the liquid particles at
these points at a given moment land on the bubble surface at different times. At point A the liquid is con-
tinuously renewed — particles with initial temperature Tw arrive on it, At point C there is a particle which
came into contact with the gas at the start of injection (of this batch). The point B is level with the center of
the height of the segment, Several intermediate calculation points Bj can be taken between A and C. We used
one or two in the calculation — this gave sufficiently accurate results (note that we talk about "points" only for
convenience: for each point there is a "circle-level™ at which the liquid particles have the same parameters).
At the point B there arrive particles which have been involved for some time tg 0 in the heat- and mass-transfer
process: 0 =tg =tp, Wetaketp,=ty2.

The difference in mass-transfer conditions leads to different local rates of bubble growth. The internal
pressure and surface tension, however, even out the shape of the bubble at a speed well in excess of R, so that
its shape is initially a spherical segment and then a sphere, The height of the segment y &), if VR > R, is

y () = Vgt 39)
The area of the bubble surface is
S ()= 2aR )y (¥). 40)

Injection is accompanied by an increase in the diameter of the bubble. Since mass transfer at point C is very
slow (and at point A, rapid), the local growth rate at point A Rp) is, consequently, the rate of increase of the
vertical dimension of the bubble (and when t >t,, the rate of increase of its diameter). To avoid the numerous
iterations of the parameters at points A, B, and C for each instant, we found it convenient to take the average
growth rate equal to
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Fig. 3. Growth of nitrogen bubble in water
[1) experimental data [2]; 2) calculation; A
is the point of breakaway of the bubble from
the injector]: Tw = 94.6°C, xo = 0.856, x; =
0.003, R = 5.73 mm, Ry =3.0 mm, Vay =
20 cm/sec, R = R/Rj — 1)/ Re/R( — 1);
Fo = at/R%.

=R

A (41)
2

and varying (if the inertia of the liquid is taken into account) from zeroto a value ﬁAo (at time t() according to
a linear law, so that the bubble radius varies with time in the following way:

R, &
R(t)=Ro+R:; . “42)
0

We also assume that at the injection stage xg is constant and equal to some average value xg,, (o be deter-
mined).

Putting Xg = 0, we obtain from (34)

. Dx
R, = Se (43)
A (l —xs') VﬂDfo
Using 40), 42), and (43), we calculate the mass of the vapor in the bubble at time tg:
[ Rypxgf?  oR R x R, £
— 4 D 0o 0 1 0"0 A" S, A."0 . 44
My = 4Ro¥s, f1 T [G(I—xs.) Ty T 20(1—xg) T } *9

We now find the temperature of the liquid at points B and C. The coordinates zpg and zp (Fig. 1) vary accord-
ing to the law

2Rt for 0<g<_10.;
2R, {, 1t & 2 (45)
25() = t—(t——Q); 2=
0 lzR" (f,—1) for %<t<t‘,.

0
Through the strip of surface formed by the circle of points of type B and subtended by a central angle A ® the
bubble receives, intimety/2 <t =< t;, the following amount of heat:

N

: R,2\(R,! D
AQ, = QszxSathGS 2,(8) (R0+ % )( . +11//~7 ) " @6)
0 0 :

15/2

Similarly, for the point C circle intime 0 =t <t,

t0/2 1y

' R, ¢ D ‘2R, ., . [ R, t VD
AQ, = 2mpy hA@H 2RzR(_Ao . _‘7T)dt + | R A T2 (47
¢ Sy ) ¢ 2%, @ Vat t ( 21, Vnt

to/2
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The quadratures of (46) and @47) are elementary, but cumbersome, and hence are not given. The amount of
heat brought from the liquid adjoining points of types B and C is, accordingly,

2 ZB.C(‘S.%; C
AQp = 2::pcR‘A@————2—'“— . 48)

The calculation procedure is as follows: We assign Tg &), from which we find % &), xg(ty), andxSav =
kg g + xSO]/z. We substitute these values in {46)-(48) and from the discrepancy we correct Tg ¢y and carry
out the iterations.

The caleculations showed that the bubble ®; = 0,17 cm) during the injection time t; = 0.008 sec absorbs
14% of the total amount of heat that it can absorb. For a bubble with R, = 0.3 ¢m this fraction is about 9% in
time t, = 0,002 sec. Thus, transfer processes must be taken with account of the start of gas injection.

In solving the problem for the following two stages of bubble growth we can again use the combined axi-
symmetric scheme of calculation, This is justified: The spherically symmetric solution would obviously
lead to an underestimated value of the growth rate. Another point that must be taken into account is that at
the stage at which the bubble remains on the injector surface the liquid moves in a meridional direction due
to growth of the bubble. If we assume that the distribution of the liquid temperature along the meridian from
point A to point B is linear, then in time At at the second stage we must add to the temperature at point B the
quantity

AT = T-=Tp RAL, “9)
aR
2

since the vertical component of the liquid velocity relative to point B is R there Ty is the liquid temperature
at point B).

At the stage of ascent of the bubble we must again introduce this correction, but instead of R we must
put the average velocity of ascent of the bubble (Uw) into the right-hand side of (49). The vapor concentration
gradient must be calculated at all points of the surface in relation to the total time of contact of this point with
the liquid, since there are always some of the liquid particles at this point and diffusion is continuous,

As examples we give the results of a comparison of the theoretical and experimental pictures of growth
of air (Fig. 2a,b) and nitrogen (Fig. 3) bubbles in water. Inthe experiments the gas bubbles were injected
into the liquid by an electromagnetic valve and were photographed by an SKS-1M high-speed camera at 4000
frames/sec. Before injection the gas was dried and heated to the liquid temperature. The bubble volume was
found by graphic integration. If the vapor concentration gradient in the bubble is known, its average value
over the volume at each instant can be calculated. Bubble growth ceases when this quantity attains a value
corresponding to saturation at temperature Tw, The agreement of the theoretical and experimental data is
quite satisfactory: The values of the final bubble radius Re differ by not more than 6%, and the values of the
amount of heat removed from the liquid differ by not more than 12%,

The solution of the problem of heat and mass transfer in bubble injection by the presented method is
used to obtain the variation in time of the bubble radius, the mass and heat fluxes through the bubble surface,
the temperature and vapor concentration on this surface, and the relative gas humidity p¢). When ¢{) and Uw
are known, the required height of the liquid layer in the planned cooling system for the obtaining of a prescribed
degree of cooling can be found; i.e., the ideas presented here can be put to effective practical use.

NOTATION

x, molar vapor concentration; D, diffusion coefficient (m?+sec™!); p, molar density (mole-m3); c,
molar specific heat (J*mole~! -deg™); h, molar heat of vaporization (J-mole™); A, thermal conductivity
W -m~!.deg™!); @, thermal diffusivity (m2-sec™!); R, bubble radius, m; &, thickness of thermal layer, m;
T, temperature (deg); t, time (sec); 7, instantaneous time (sec); U, bubble ascent velocity (m-sec~!); Vg,
bubble injection velocity (m-sec"); S, surface area, m% r, z, y, coordinates (m); x, temperature gradient
in thermal layer (deg-m"‘); v, auxiliary function; V, generalized heat potential; #, heat potential density;
Fo, Fourier number., Indices: 0, initial values; «, final values; S, conditions on bubble surface; Z, mix-
ture; av, average value; -, differentiation with respect totime; A, saturation of liquid component A; B,
saturation of gas component B,
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CRITICAL DISCHARGE OF SATURATED AND SUBCOOLED
WATER THROUGH CHANNELS OF DIFFERENT SHAPES

V. G. Tonkonog, G. A. Mukhachev, UDC 532.57
B. M. Pavlov, and I. F. Murav'ev

A complex experimental investigation of the outflow of saturated and subcooled water through
channels of different forms has been carried out in the pressure range of 5-20 bar; the inves-
tigation included the measurements of the discharge, static pressure curves, moisture content
field of the two~phase flow, and the photographic recording of the evaporation process. Empiri-
cal equations are proposed for determining the critical discharge.

The outflow of liquid into a medium with small counterpressure leads to the formation of a very
moist two-phage flow. Inthe general case this process occurs with the violation of the thermodynamic
equilibrium and the vapor — liquid flow thus formed is characterized by a structural inhomogeneity {1,2]. All
this makes it difficult to use analytical methods for determining the maximum discharge of the evaporating
liquid and forces one to take recourse to experiments. Inthe experimental respect the most completely in-
vestigated flow is the flow of water through diaphragms and cylindrical channels and there are practically no
investigations of the flow of an evaporating liquid to channels of variable cross section, as can be seen from
comprehensive reviews [3,4].

We made an attempt to study the effect of the geometry of the channel on the critical phenomena ina
two-phase flow and on the critical discharge. The experiments were conducted on a device which was made
according to the closed scheme and is described in [5]. As the operating substance we used clean deaerated
water from the main supply to the boilers of the Kazan' TETs-2 thermoelectric power plant. Before the ex-
perimental segments the water parameters were measured in the pressure range of 5-20 bar and temperature
range of 100-200°C, The geometry of the experimental channels is shown in Fig. 1. They include Laval
nozzles with opening angles of 2-30°, diverging channels with a sharp-edged entrant orifice and opening angles
of 4-30°, and channels of constant cross section, In all, 23 plane channels were tested. The dimensions of
some of these are given in Table 1, The static pressure distribution along the length of the experimental
channels was measured with the use of a tension probe placed in the plane wall of the channel, The fields of
the phase concentrations in the flow were obtained by the radiographic method described in [2] by illuminating
the two~phase flow with x-ray beams.

A combined analysis of the static pressure curves, the moisture content field, and the discharge char-
acteristics of the channels, for which the typical results of measurements are given in Figs. 2, 3, and 4,
showed that the establishment of the maximum discharge is related to the formation of a zone of intense
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